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Abstract. Let G be a higher rank simple real algebraic group, or more

generally, any semisimple real algebraic group with no rank one factors

and X the associated Riemannian symmetric space. For any Zariski

dense discrete subgroup Γ < G, we prove that Vol(Γ\X) = ∞ if and

only if no positive Laplace eigenfunction belongs to L2(Γ\X), or equiv-

alently, the bottom of the L2-spectrum is not an atom of the spectral

measure of the negative Laplacian. This contrasts with the rank one

situation where the square-integrability of the base eigenfunction is de-

termined by the size of the critical exponent relative to the volume

entropy of X.

Volume infini et atomes au bas du spectre

Résumé. Soit G un groupe algébrique réel simple de rang supérieur, ou

plus généralement un groupe algébrique réel semi-simple sans facteurs

de rang un et X l’espace symétrique riemannien associé. Pour tout sous-

groupe discret dense de Zariski Γ < G, on prouve que Vol(Γ\X) = ∞ si

et seulement si aucune fonction propre de Laplacien positive appartient

à L2(Γ\X), ou de manière équivalente, le bas du spectre L2 n’est pas un

atome de la mesure spectrale du Laplacien négatif. Cela contraste avec

la situation de rang un où l’intégrabilité au carré de la fonction propre

de base est déterminée par la taille de l’exposant critique par rapport à

l’entropie volumique de X.
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1. Introduction

Let M be a complete Riemannain manifold and let ∆ denote the Laplace-

Beltrami operator on M. Define the real number λ0(M) ∈ [0,∞) by

λ0(M) := inf

®∫
M ∥grad f∥2 d vol∫

M |f |2 d vol
: f ∈ C∞

c (M)

´
, (1.1)

where C∞
c (M) denotes the space of all smooth functions with compact sup-

port. This number λ0(M) is known as the bottom of the L2-spectrum of

the negative Laplacian −∆ and separates the L2-spectrum and the posi-

tive spectrum [24, p. 329] (Fig. 1). More precisely, let L2(M) denote

Figure 1. λ0 separates the L2 and positive spectrum

the space of all square-integrable functions with respect to the inner prod-

uct ⟨f1, f2⟩ =
∫
M f1f2 d vol. Let W 1(M) ⊂ L2(M) denote the closure of

C∞
c (M) with respect to the norm

∥f∥W 1 =

Å∫
M
f2 d vol+

∫
M

∥ grad f∥2 d vol
ã1/2

.

There exists a unique self-adjoint operator on the space W 1(M) extending

the Laplacian ∆ on C∞
c (M), which we also denote by ∆ (cf. [11, Chapter

4.2]). The L2-spectrum of −∆ is the set of all λ ∈ C such that ∆ + λ

does not have a bounded inverse (∆ + λ)−1 : L2(M) → W 1(M). Sullivan

showed that the L2-spectrum of −∆ contains λ0(M) and is contained in the

positive ray [λ0(M),∞), that is, λ0(M) is the bottom of the L2-spectrum,

and moreover, there are no positive eigenfunctions with eigenvalue strictly

bigger than λ0(M) [24, Theorem 2.1 and 2.2] (see Fig. 1). We will call an
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eigenfunction with eigenvalue λ0(M) a base eigenfunction. Note that the

absence of a base eigenfunction in L2(M) is the same as the absence of a

positive eigenfunction in L2(M) [24, Cor. 2.9].

In this paper, we are concerned with locally symmetric spaces. Let G

be a connected semisimple real algebraic group and (X, d) the associated

Riemannian symmetric space. Let Γ < G be a discrete torsion-free subgroup

and let M = Γ\X the corresponding locally symmetric manifold.

For a rank one locally symmetric manifold M = Γ\X, the relation be-

tween λ0(M) and the critical exponent1 δΓ is well-known: if we denote by

D = DX the volume entropy of X, then

λ0(M) =


D2/4 if δΓ ≤ D/2

δΓ(D − δΓ) otherwise

([6]-[8], [18]-[20], [24], [3]). We refer to ([16], [1], [2], [9], [28]) for extensions

of these results to higher ranks. We remark that when G has Kazhdan’s

property (T) (cf. [29, Theorem 7.4.2]), we have Vol(M) = ∞ if and only if

λ0(M) > 0 ([3], [16]).

The goal of this article is to study the square-integrability of a base eigen-

function of locally symmetric manifolds. The space of square-integrable base

eigenfunctions is at most one dimensional and generated by a positive func-

tion when non-trivial [24]. Based on this positivity property and using their

theory of conformal measures on the geometric boundary, Patterson and

Sullivan showed that if M is a geometrically finite real hyperbolic (n + 1)-

manifold, then M has a square-integrable base eigenfunction if and only if

the critical exponent δΓ is strictly greater than n/2 ([21], [25], [24, Theorem

2.21]). More generally, the formula for λ0(M) given above, together with [12,

1the abscissa of convergence of the Poincare series s 7→
∑

γ∈Γ e−sd(o,γo), o ∈ X.
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Corollary 3.2] (cf. also [17]) and [27, Theorem 1.1], implies that any rank one

geometrically finite manifold M has a square-integrable base eigenfunction

if and only if the critical exponent δΓ is strictly greater than DX/2.

The main theorem of this paper is the following surprising higher rank

phenomenon that contrasts with the rank one situation:

Theorem 1.1. Let G be a connected semisimple real algebraic group with

no rank one factors. For any Zariski dense discrete torsion-free subgroup

Γ < G, we have Vol(Γ\X) = ∞ if and only if Γ\X does not possess any

square-integrable positive Laplace eigenfunction, that is, λ0(Γ\X) > 0 is not

an atom for the spectral measure of −∆.

In other words, when Vol(Γ\X) = ∞, no base eigenfunction is square-

integrable (see also Theorem 4.3 for a more general version). A special case

of this theorem for Anosov subgroups of higher rank semisimple Lie groups

was proved in [9, Theorem 1.8]. See Theorem 4.3 for a more general version.

Our proof of Theorem 1.1 is based on the higher rank version of Patterson-

Sullivan theory introduced by Quint [22], with a main new input being

the recent theorem of Fraczyk and Lee (Theorem 4.1, [10]). Suppose that

Vol(Γ\X) = ∞ and a base eigenfunction is square-integrable. Using Sulli-

van’s work [24], it was then shown by Edwards and Oh [9] that there exists

a Γ-conformal density {νx : x ∈ X} on the Furstenberg boundary of G (see

Definition 2.1) such that any such base eigenfunction is proportional to the

function Eν given by

Eν(x) = |νx| for all x ∈ X. (1.2)

Moreover, the following higher rank version of the smearing theorem of

Thurston and Sullivan ([25], [26]) was also obtained by Edwards-Oh [9] (see
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Theorem 3.1):

|mν,ν | ≪
∫
Γ\X

|Eν |2dx,

where mν,ν is a generalized Bowen-Margulis-Sullivan measure on Γ\G cor-

responding to the pair (ν, ν); see Definition 3.3. On the other hand, the

recent theorem of Fraczyk and Lee (Theorem 4.1, [10]) which describes all

discrete subgroups admitting finite BMS measures implies that |mν,ν | = ∞,

and consequently, Eν /∈ L2(Γ\X), yielding a contradiction. We remark that

the integrand on the right hand side of (1.2) can be replaced by an O(1)-

neighborhood of the support of mν,ν and Sullivan used the rank one version

of this to deduce the finiteness of the BMS measure mν,ν attached to the

(unique) Patterson-Sullivan measure ν from the the growth control of the

base eigenfunction for Γ geometrically finite [25].

We close the introduction by presenting two related questions on the L2-

spectrum. When Γ < G is geometrically finite in a rank one Lie group and

there is no positive square-integrable eigenfunction, there are no Laplace

eigenfunctions in L2(Γ\X) and the quasi-regular representation L2(Γ\G) is

tempered2 ([18], [25], [4], [15]). In view of this, we ask the following question:

letG be a semisimple real algebraic group with no rank one factors and Γ < G

be a Zariski dense discrete subgroup.

Question 1.1. When Γ < G is not a lattice, can there exist any Laplace

eigenfunction in L2(Γ\X)?

Acknowledgements We would like to thank Peter Sarnak and David Fisher

for their interests and useful comments. We thank the anonymous referee

for helpful remarks.

2This means that L2(Γ\G) is weakly contained in L2(G), or equivalently, every matrix
coefficient of L2(Γ\G) is L2+ε(G)-integrable for any ε > 0.



6 SAM EDWARDS, MIKOLAJ FRACZYK, MINJU LEE*, HEE OH

2. Positive eigenfuntions and conformal measures

Let G be a connected semisimple real algebraic group. We fix, once and

for all, a Cartan involution θ of the Lie algebra g of G, and decompose g as

g = k ⊕ p, where k and p are the +1 and −1 eigenspaces of θ, respectively.

We denote by K the maximal compact subgroup of G with Lie algebra

k. We also choose a maximal abelian subalgebra a of p. We denote by

⟨·, ·⟩ and ∥ · ∥ respectively the Weyl-group invariant inner product and norm

on a induced from the Killing form on g. We denote by X = G/K the

corresponding Riemannian symmetric space equipped with the Riemannian

metric d induced by the Killing form on g. The Riemannian volume form on

X is denoted by d vol . We also use dx to denote this volume form, as well

as for the Haar measure on G.

Let A := exp a. Choosing a closed positive Weyl chamber a+ of a, let

A+ = exp a+. The centralizer of A in K is denoted by M , and we set N to

be the maximal horospherical subgroup for A so that log(N) is the sum of

all positive root subspaces for our choice of a+. We set P = MAN , which

is a minimal parabolic subgroup of G. The quotient

F = G/P

is known as the Furstenberg boundary of G, and since K acts transitively

on F and K ∩ P =M , we may identify F with K/M .

Let Σ+ denote the set of all positive roots for (g, a+). We also write

Π ⊂ Σ+ for the set of all simple roots. For any g ∈ G, there exists a unique

element µ(g) ∈ a+ such that g ∈ K expµ(g)K. The map µ : G→ a+ is called

the Cartan projection. Setting o = [K] ∈ X, we then have ∥µ(g)∥ = d(go, o)

for all g ∈ G. Throughout the paper we will identify functions on X with

right K-invariant functions on G. For each g ∈ G, we define the following
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visual maps:

g+ := gP ∈ F and g− := gw0P ∈ F , (2.1)

where w0 denotes the longest Weyl group element, i.e. the Weyl group

element such that Adw0 a
+ = −a+. The unique open G-orbit F (2) in F ×F

under the diagonal G-action is given by F (2) = G(e+, e−) = {(g+, g−) ∈

F × F : g ∈ G}. Let G = KAN be the Iwasawa decomposition, and define

the Iwasawa cocycle H : G→ a by the relation:

g ∈ K exp
(
H(g)

)
N.

The a-valued Busemann map is defined using the Iwasawa cocycle as fol-

lows: for all g ∈ G and [k] ∈ F with k ∈ K, define

β[k](g(o), h(o)) := H(g−1k)−H(h−1k) ∈ a for all g, h ∈ G.

Conformal measures. We denote by a∗ the space of all real-valued linear

forms on a. In the rest of this section, let Γ < G be a discrete subgroup.

The following notion of conformal densities was introduced by Quint [22,

Section 1.2], generalizing Patterson-Sullivan densities for rank one groups

([21, Section 3], [23, Section 1]).

Definition 2.1. Let ψ ∈ a∗.

(1) A finite Borel measure ν on F = K/M is said to be a (Γ, ψ)-conformal

measure (for the basepoint o) if for all γ ∈ Γ and ξ = [k] ∈ K/M ,

dγ∗ν

dν
(ξ) = e−ψ(βξ(γo,o)),

where γ∗ν(Q) = ν(γ−1Q) for any Borel subset Q ⊂ F .
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(2) A collection {νx : x ∈ X} of finite Borel measures on F is called a

(Γ, ψ)-conformal density if, for all x, y ∈ X, ξ ∈ F and γ ∈ Γ,

dνx
dνy

(ξ) = e−ψ(βξ(x,y)) and dγ∗νx = dνγ(x). (2.2)

A (Γ, ψ)-conformal measure ν defines a (Γ, ψ)-conformal density {νx : x ∈

X} by the formula:

dνx(ξ) = e−ψ(βξ(x,o))dν(ξ),

and conversely any (Γ, ψ)-conformal density {νx} is uniquely determined by

its member νo by (2.2). By a Γ-conformal measure on F , we mean a (Γ, ψ)-

conformal measure for some ψ ∈ a∗.

Definition 2.2. Let ψ ∈ a∗. Associated to a (Γ, ψ)-conformal measure ν on

F , we define the following function Eν on G: for g ∈ G,

Eν(g) := |νg(o)| =
∫
F
e−ψ

(
H(g−1k)

)
dν([k]). (2.3)

We remark that this is same as the transformation introduced in [13]. Since

|νγ(x)| = |νx| for all γ ∈ Γ and x ∈ X, the left Γ-invariance and right K-

invariance of Eν are clear. Hence we may consider Eν as a K-invariant

function on Γ\G, or, equivalently, as a function on Γ\X.

Let D = D(X) denote the ring of all G-invariant differential operators on

X. For each (Γ, ψ)-conformal measure ν, Eν is a joint eigenfunction of D

and conversely, any positive joint eigenfunction on Γ\X arises as Eν for some

(Γ, ψ)-conformal measure ν [9, Proposition 3.3].

Let ∆ denote the Laplace-Beltrami operator on X or on Γ\X. Since ∆ is

an elliptic differential operator, an eigenfunction is always smooth. We say

a smooth function f is λ-harmonic if

−∆f = λf.
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Define the real number λ0 = λ0(Γ\X) ∈ [0,∞) as follows:

λ0 := inf

{∫
Γ\X ∥grad f∥2 d vol∫

Γ\X |f |2 d vol
: f ∈ C∞

c (Γ\X), f ̸= 0

}
. (2.4)

We call a λ0-harmonic function on Γ\X a base eigenfunction. In general,

a λ-harmonic function need not be a joint eigenfunction for the ring D(X).

However, a square-integrable λ0-harmonic function turns out to be a positive

joint eigenfunction, up to a constant multiple. The following is obtained in

[9, Corollary 6.6, Theorem 6.5] using Sullivan’s work [24] and [14].

Theorem 2.3. [9] If a base eigenfunction ϕ0 belongs to L2(Γ\X), then there

exists ψ ∈ a∗ and a (Γ, ψ)-conformal measure ν on F such that ϕ0 is pro-

portional to Eν .

Here the space L2(Γ\X) consists of square-integrable functions with re-

spect to the inner product ⟨f1, f2⟩ =
∫
Γ\X f1f2 d vol.

3. Higher rank smearing theorem

Let G be a connected semisimple real algebraic group and Γ < G be a

discrete subgroup. We recall the definition of a generalized Bowen-Margulis-

Sullivan measure, as was defined in [5, Section 3].

Fix a pair of linear forms ψ1, ψ2 ∈ a∗. Let ν1 and ν2 be respectively (Γ, ψ1)

and (Γ, ψ2) conformal measures on F . Using the homeomorphism (called

the Hopf parametrization) G/M → F (2) × a given by gM 7→ (g+, g−, b =

βg−(o, go)), define the following locally finite Borel measure m̃ν1,ν2 on G/M

as follows: for g = (g+, g−, b) ∈ F (2) × a,

dm̃ν1,ν2(g) = eψ1(βg+ (o,go))+ψ2(βg− (o,go)) dν1(g
+)dν2(g

−)db, (3.1)

where db = dℓ(b) is the Lebesgue measure on a induced from the inner prod-

uct ⟨·, ·⟩. The measure m̃ν1,ν2 is left Γ-invariant and right A-semi-invariant:
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for all a ∈ A,

a∗m̃ν1,ν2 = e(−ψ1+ψ2◦i)(log a) m̃ν1,ν2 , (3.2)

where i denotes the opposition involution3 i : a → a (cf. [5, Lemma 3.6]). The

measure m̃ν1,ν2 gives rise to a left Γ-invariant and right M -invariant measure

on G by integrating along the fibers of G→ G/M with respect to the Haar

measure on M . By abuse of notation, we will also denote this measure by

m̃ν1,ν2 . We denote by

mν1,ν2 (3.3)

the measure on Γ\G induced by m̃ν1,ν2 , and call it the generalized BMS-

measure associated to the pair (ν1, ν2).

The following theorem was proved in [9, Theorem 7.4], extending the

smearing argument due to Sullivan and Thurston ([25, Proposition 5], [4,

Proof of Theorem 4.1]) to the higher rank setting.

Theorem 3.1 (Edwards-Oh, [9]). Let ψ1, ψ2 ∈ a∗. There exists a constant

c = c(ψ1, ψ2) > 0 such that for any pair (ν1, ν2) of (Γ, ψ1) and (Γ, ψ2)-

conformal measures on F respectively,

|mν1,ν2 | ≤ c

∫
1-neighborhood of suppmν1,ν2

Eν1(x)Eν2(x) dx.

Although [9, Theorem 7.4] was stated so that c depends on ν1, ν2, the

formula for c given in its proof shows that c depends only on the associated

linear forms ψ1, ψ2.

An immediate corollary is as follows:

Corollary 3.2. Let ν be a Γ-conformal measure on F . If |mν,ν | = ∞, then

Eν /∈ L2(Γ\X).

3It is defined by i(u) = −Adw0(u), where w0 is the longest Weyl element.
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4. Proof of Main theorem

As in Theorem 1.1, let G be a connected semisimple real algebraic group

with no rank one factors and Γ < G be a Zariski dense discrete torsion-free

subgroup. We recall the following recent theorem:

Theorem 4.1 (Fraczyk-Lee, [10]). Suppose that Vol(Γ\X) = ∞. Then for

any pair (ν1, ν2) of (Γ, ψ) and (Γ, ψ◦ i)-conformal measures for some ψ ∈ a∗,

mν1,ν2(Γ\G) = ∞.

Corollary 4.2. If Vol(Γ\X) = ∞, then for any pair (ν1, ν2) of Γ-conformal

measures, mν1,ν2(Γ\G) = ∞.

Proof. For k = 1, 2, let νk be a (Γ, ψk)-conformal measure with ψk ∈ a∗.

Suppose |mν1,ν2 | <∞. Since a∗mν1,ν2 = eψ1(log a)−ψ2(i log a)mν1,ν2 for all a ∈ A

by (3.2), it follows that

|mν1,ν2 | = eψ1(log a)−ψ2(i log a)|mν1,ν2 |.

Since |mν1,ν2 | <∞, we must have

ψ2 = ψ1 ◦ i.

Therefore the claim follows from Theorem 4.1. □

Proof of Theorem 1.1 Suppose that Vol(Γ\X) = ∞ and ϕ0 is a base

eigenfunction in L2(Γ\X). By Proposition 2.3, we may assume that ϕ0 = Eν

for some Γ-conformal measure ν on F . Now by Theorem 3.1 and Corollary

4.2,

∞ = |mν,ν | ≪ ∥Eν∥22.

This is a contradiction.
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Indeed, using a more precise version of the main theorem of [10] in re-

placement of Theorem 4.1, we obtain the following without the hypothesis

on no rank one factors.

Theorem 4.3. Let G be a connected semisimple real algebraic group and Γ <

G be a Zariski dense discrete subgroup. If Γ\X admits a square-integrable

base eigenfunction, then G = G1G2, Γ is commensurable with Γ1Γ2 where

G1 (resp. G2) is an almost direct product of rank one (resp. higher rank)

factors of G, Γ1 < G1 is a discrete subgroup and Γ2 < G2 is a lattice.
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